232 research outputs found

    Virtual Engineering Using Realistic Virtual Models in Brownfield Factory Layout Planning

    Get PDF
    As more pressure is put on manufacturing companies to increase productivity and reduce waste as a means to remain competitive due to increased globalization and digitalization, many companies find themselves investing in their production systems, leading to changes in their existing factories and production systems. This process is usually performed with 2D CAD drawings and data of varying quality, leading to several challenges along the way. This longitudinal research follows up on eight years of industrial studies where researchers have applied 3D laser scanning and immersive virtual reality to improve the brownfield factory layout planning processes in real industrial scenarios, a novel approach in the research field. By interviewing key stakeholders at each company and analyzing the findings, challenges in data availability and accuracy of existing data, grasping scale and perspective, and challenges gathering input and communicating around planned changes are identified and shown to be substantially alleviated by the application of the technological tools and allowing more people to be part of the factory layout planning process. By using virtual engineering, industries can improve their brownfield factory layout planning process and take wellinformed decisions leading to sustainability benefits via fewer costly mistakes, improved employee engagement, and less need for travel

    Driving vehicle dismantling forward - A combined literature and empirical study

    Get PDF
    To move towards a more sustainable and circular economy, a more efficient recovery processes for end-of-life vehicles and their constituent components and materials is needed. To enable reuse, remanufacturing, high-value recycling and other circular strategies, a well-functioning disassembly is essential. This article presents a literature review of studies focusing on vehicle dismantling and surrounding end-of-life treatment systems. Furthermore, topics considered as the most critical for practitioners were identified through focus groups composed of industry representatives and researchers from various Swedish organizations. By comparing findings from the literature and empirical results, it is concluded that there are differences and gaps between the areas researched and those considered as important by industry, thus calling for further research to address practical challenges in improving vehicle end-of-life management. The four areas highlighted as the most prominent are: i) plastics, ii) batteries, iii) investments and ownership structures, and iv) the workforce

    Environmental Sustainability of Digitalization in Manufacturing: A Review

    Get PDF
    The rapid development and implementation of digitalization in manufacturing has enormous impact on the environment. It is still unclear whether digitalization has positive or negative environmental impact from applications in manufacturing. Therefore, this study aims to discuss the overall implications of digitalization on environmental sustainability through a literature study, within the scope of manufacturing (product design, production, transportation, and customer service). The analysis and categorization of selected articles resulted in two main findings: (1) Digitalization in manufacturing contributes positively to environmental sustainability by increasing resource and information efficiency as a result of applying Industry 4.0 technologies throughout the product lifecycle; (2) the negative environmental burden of digitalization is primarily due to increased resource and energy use, as well as waste and emissions from manufacturing, use, and disposal of the hardware (the technology lifecycle). Based on these findings, a lifecycle perspective is proposed, considering the environmental impacts from both the product and technology lifecycles. This study identified key implications of digitalization on environmental sustainability in manufacturing to increase awareness of both the positive and negative impacts of digitalization and thereby support decision making to invest in new digital technologies

    A Framework for Extended Reality System Development in Manufacturing

    Get PDF
    This paper presents a framework for developing extended reality (XR) systems within manufacturing context. The aim of this study is to develop a systematic framework to improve the usability and user acceptance of future XR systems. So that manufacturing industry can move from the “wow effect” of XR demonstrators into the stage whereas XR systems can be successfully integrated and improve the conventional work routines. It is essential to ensure the usability and user acceptance of XR systems for the wider adoption in manufacturing. The proposed framework was developed through six case studies that covered different XR system developments for different application areas of manufacturing. The framework consists of five iterative phases: (1) requirements analysis, (2) solution selection, (3) data preparation, (4) system implementation and (5) system evaluation. It is validated through one empirical case and seven identified previous studies, which partly aligned with the proposed framework. The proposed framework provides a clear guideline on the steps needed to integrate XR in manufacturing and it extends the XR usage with increased usability and user acceptance. Furthermore, it strengthens the importance of user-centered approach for XR system development in manufacturing

    An Enhanced Data-Driven Algorithm for Shifting Bottleneck Detection

    Get PDF
    Bottleneck detection is vital for improving production capacity or reducing production time. Many different methods exist, although only a few of them can detect shifting bottlenecks. The active period method is based on the longest uninterrupted active time of a process, but the analytical algorithm is difficult to program requiring different self-iterating loops. Hence a simpler matrix-based algorithm was developed. This paper presents an improvement over the original algorithm with respect to accuracy

    Virtual factory layouts from 3D laser scanning – A novel framework to define solid model requirements

    Get PDF
    In a world with increasing customer demands, manufacturing companies must develop and produce products more rapidly and adapt their production systems offline, to not disturb the ongoing processes. This creates a demand of using digital production development so that development can be performed in parallel with production. Virtual factory layouts (VFLs) are essential for companies in order to plan their factory layout and evaluate production scenarios. However, requirements for a VFL depends heavily on its purpose. For example, the requirements on a model for offline programming of robots are different from those on a model used to determine buffer locations. There is currently a lack of clear guidelines for how developed a VFL should be to fulfil said requirements, which contributes to unnecessary modelling time and variation in delivery quality. This paper aims to put the actual demands and requirements of a VFL in focus. By adapting a Level of Development-framework for establishment of Building Information Models (BIMs) and connecting it to the purpose of VFLs, development of a framework for detail and functionality level of VFLs is enabled. Such a purpose-oriented framework will help to define delivery packages suited for different circumstances, which will provide the modeler with knowledge of how much detail and functionality a specific model should contain. The increased clarity provided by the developed framework results in a clearer connection between expected result and actual output from a custom VFL project. Also, by connecting model properties or development to the model-purpose, the framework brings clarity and structure to a currently vague field. This provides means for a more efficient and accurate use of VFLs, which will support the rapid development of production facilities

    Enabling the Twin Transitions: Digital Technologies Support Environmental Sustainability through Lean Principles

    Get PDF
    Manufacturing companies seek innovative approaches to achieve successful Green and Digital transitions, where adopting lean production is one alternative. However, further investigation is required to formulate the approach with empirical inputs and identify what digital technologies could be applied with which lean principles for environmental benefits. Therefore, this study first conducted a case study in three companies to collect empirical data. A complementary literature review was then carried out, investigating the existing frameworks, and complementing practices of digitalized lean implementations and the resulting environmental impact. Consequently, the Internet of Things and related connection-level technologies were identified as the key facilitators in lean implementations, specifically in visualization, communication, and poka-yoke, leading to environmental benefits. Furthermore, a framework of DIgitalization Supports Environmental sustainability through Lean principles (DISEL) was proposed to help manufacturing companies identify the opportunities of digitalizing lean principles for Environmental sustainability, thus enabling the twin transitions and being resilient

    Bridging the Hype Cycle of Collaborative Robot Applications

    Get PDF
    This paper investigates manufacturing companies’ current and planned usage of collaborative robots along with possible reasons for the observed slow growth in implementing Collaborative Robot Applications (CRAs) in the industry. The paper also discusses whether similarities can be seen in the Gartner Hype Cycle for technology adoption. Findings from an industrial survey suggest increasingly positive attitudes towards using CRAs in manufacturing and final assembly operations as tools and support mechanisms aiding human operators. Better methodologies and best practices are urgently needed for successful CRA implementation and efficient manufacturing human-robot collaboration design

    Specifying task allocation in automotive wire harness assembly stations for Human-Robot Collaboration

    Get PDF
    Wire harness assembly is normally a manual assembly process that poses\ua0ergonomic\ua0challenges. As a consequence of the rapidly expanding electrification of vehicles and transportation systems, the demand for wire harnesses can be expected to grow radically, further increasing assembly operator challenges. Thus, automating this assembly process is highly prioritised by production engineers. The rapid development of industrial robot technology has enabled more human-robot collaboration possibilities, simplifying the automation of wire harness process tasks. However, successful automation applications involving humans require efficient and safe allocation of tasks between humans and technology. Unfortunately, present assembly system design methods may be obsolete and insufficient in light of the capabilities of emerging automation technologies such as collaborative robots. This paper presents a design and specification methodology for human-centred\ua0manufacturing systems\ua0and focuses on collaborative assembly operations in complex production systems. A case study on human-robot collaboration provides an application example from a wire-harness collaborative assembly process. The proposed design methodology combines\ua0hierarchical task analysis\ua0with assessments of cognitive and physical Levels of Automation (LoAc\ua0and LoAp). The assessments are then followed by evaluations of the Levels of human-robot Collaboration (LoC) and the Levels of operator Skill requirements (LoSr) respectively. A task allocation\ua0matrix supports\ua0the identification of possible combinations of automation and collaboration solutions for a human-centred and collaborative wire harness assembly process. System designers and integrators may utilise the design and specification methodology to identify the potential and extent of human-robot collaboration in collaborative manufacturing assembly operations

    Organisational sustainability readiness: a model and assessment tool for manufacturing companies

    Get PDF
    Manufacturing plays a major role in the economic and social development of society, yet this often comes at a high environmental cost. Despite great advances in our understanding of sustainability issues and solutions developed to tackle this challenge, current production and consumption models are still largely unsustainable. Strong industrial actions are required to move towards safer and cleaner practices respectful of the planetary boundaries. This paper puts forward a novel approach for top and middle management in manufacturing companies to build capabilities for sustainable manufacturing by assessing their organisational sustainability readiness. The proposed model and tool for organisational sustainability readiness were developed based on themes emerging from empirical data collected via interviews and focus groups in six companies. The resulting themes were consolidated and validated with relevant literature to create four levels of readiness, displaying a crescendo of operations management practices on the shop floor that positively affect sustainability performance. Finally, an industrial application was used to further validate the tool and demonstrate how it can help companies develop a roadmap for a more sustainable manufacturing industry
    • …
    corecore